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Abstract. The paper offers the complete form of the BRST charges and of the extended
Hamiltonian for the first-rank theories in the context of the sp(3) BRST symmetry. A theorem
is proposed in order to solve the problem of existence and uniqueness of a gauge fixed Hamiltonian
in this context. As a general result, it is verified that the standard and the sp(2) theories could be
recovered as particular cases of our generalized symmetry.

1. Introduction

The possibility of extension of the standard BRST symmetry towards a generalized one in
the canonical quantization of gauge theories was suggested in [1], where the Koszul complex
corresponding to the ghost momenta was constructed by setting the generators on more levels.
Using the same pattern, itis possible to complete the theory and also to obtain the ghosts sector.

This paper develops the results reported in [2], where possible extensions of the standard
BRST symmetry were presented, and where even a fourth-order symmetry was effectively
built, but the gauge fixing problem was not discussed. In a previous paper [3] the existence
of a gauge fixed sp(3) Hamiltonian was proved by using the three-graduation technique of the
ghost fields, by generalizing the line of [4,5]. Our objective is to prove the existence of a
sp(3) gauge fixed Hamiltonian and to clarify the possible arbitrariness that could occur in its
expression into the formalism proposed in [2]. The construction we propose generalizes the
standard BRST theory [6], as well as the sp(2) BRST quantization procedure from [7, 8].

We shall focus now on the general case of the irreducible first-rank theories and we shall
compute, for the firsttime, the full expressions of the three BRST charges and of the sp(3) BRST
invariant Hamiltonian. The first-rank theories are a very important class of gauge theories, as
long as the abelian gauge field, the Yang—Mills theories and other useful examples belong to
it.

In order to obtain a quantum description of a gauge theory in the BRST context, the
following algorithm must be applied:

e the extension of the phase space by adding new ghost-type variables to the initial
coordinates; they are Grassmann-valued variables and assure the consistency of the theory;
o the construction of the anticommuting fermionic generating functions: = 1,2, .. .,
S0 as to satisfy some adequate boundary conditions; using the Poisson superbracket [7],
extended to the whole phase space, the previous requirements are to be expressed by the
relations:

[, 2] =0 (@) =1 a=12,... 1)
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o the determination of the Hamiltonian that ought to be defined on the extended phase space
and invariant under the global transformation of the variables given by the BRST charges
Q-

s;H=[H,Q2,]=0 a=12,... (2)

o use of the gauge fixing procedure to obtain a properly defined Hamiltonian, free from the
unphysical degrees of freedom.

The above-mentioned algorithm will be developed in this paper, which is structured as
follows: in sectim 2 a short presentation of the extended phase space, suitable for the sp(3)
Hamiltonian quantization of an irreducible gauge theory, will be considered; in section 3
the general method that can be used to obtain the BRST chgiges = 1, 2, 3} and the
unitarizing Hamiltonian starting from equations (1) and (2) will be applied for the case of the
first-rank theories. The results will be compared, in section 4, with the expressions of the same
guantities as in the case of less extended symmetries. More precisely, we shall verify that
the standard and the sp(2) BRST symmetries are particular cases of the sp(3) theory. Some
concluding remarks will end the paper.

2. The sp(3) extended phase space

Let us consider a dynamical system described in the phase space of the canonical variables
(g%, pi;i = 1,...,n} by the HamiltonianHy(q, p) and by the set of irreducible first-class
constraint4G,(q, p) = 0; « = 1, m}. The following involution relations will be valid in this

case:

[Ga, G4l = fl3(q, P)Gy [Ho, Gu] = VI (g, p)Gg. ®)

If the structure functiong‘ofﬁ andV# do not depend on the canonical variables, that is to say
they are constant coefficients, the system is called a first-rank system.

In the case whensgp(3) symmetris wanted, the total BRST differential would be written
as

Sy =81+ S52+53 (4)
with the requirements

(s7)° = (s1+52+53)° =0 5)
SaSp +Sps, =0 a,b=123. (6)

The sp(3) symmetrymplies that, by construction, the tripl¢t,; « = 1, 2, 3} will act on
the generators of the phase space symmetrically with respect to the transformations of the
symplectic group sp(3).

This larger symmetry that we impose on the system asks for a larger phase space. Let
us denote by = {Q*, P4; A = 1, ...} the new space, wher@” and P, designate all the
generators and they are canonical conjugated with respect to a Poisson superbracket, which
for two functionalsF andG has the form [7]

8F 686G

8G SF
SQA 8P,

[F. 6] = SQA P,

_ (_1)€(F)€(G)

()



The gauge fixing problem in sp(3) BRST canonical formalism 3007

2.1. The level structure and graduation rules

In order to obtain a consistent description of the theory, we shall construct an extended phase
space which is obtained by adding some ghost variables to the real ones. We shall consider
the stratification of the extended phase space on more ‘lekéls! € R. Identical ‘copies’

of the same ghost-type variables could be present at various levels. As a result, the following
four numbers are to be used in order to characterize the variables:

o theghost number (ghls defined in the standard manng# > O for ghosts angh < O
for ghost-momenta,;

e theresolution degree (res$ defined only for the ghost momenta,1s6 = —g#h;

o thelevel number (levis an integer (positive, negative or zero) characterizing the level on
which the variables are situated.

As the resolution degree is connected to the ghost number, for a vadiateshall adopt
the following representation:
8D
A= A g=gh [ =lev. (8)
In any ‘composition’ process of two variabldsand B we suppose that the pai,(/) would
satisfy the superposition rule
(g1,11)  (g2,02) (g1+g2,1*l2)
Asx B = C . 9)
The constraints and all the observables of the theory are disposed bf?thevel, which
we shall call theground level Using the notation (8), we could write
©,0)
G, =G, .
The same representation will be used for the operators. The significance of the level
degree will be connected in this case to the number of levels ‘jumped’ by the variables under
the action of the operator. For the Koszul differentials, for example, we have [1]

(=1,0)
5. 1(6,)=c—1 c=1,23 (10)

2.2. The ghost momenta spectrum

In the case of an irreducible gauge theory the structure of the Koszul complex suitable for
the sp(3) quantization has been given in [1]. We shall briefly present here this structure and,
starting from it, we shall obtain the whole extended phase space.

The Koszul complex will be generated by three sets of variables that will be situated on
the ‘ground’ level and on other three levels:

(=10
Py={Py;c=1231l=c+1}
aa= {7 c=1231=c—4
TA = {(_‘C‘?;l); = _3} (11)

On this complex we define a differentialy, that could be decomposed into three
anticommuting items:

87 = 81+ 85+ 83. (12)
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We shall consider the following action on the generators

(1,a-1) (-1,1-b) (0,0
861 Pab :(Sub Ga a,b:l,2,3
La=1) (—2,p—4 (-1,1-¢)
a Tab = €ape  Pac €123 = 1
@La-1)(-3-3 (-2a-4
da T = 7[;11 a=1, 27 3 (13)

wheres,;, represents the Kronecker symbol afygl. is the total antisymmetric tensor.

2.3. The canonical structure

In order to ensure the canonical structure of the phase space, to each momentum we add a
coordinate conjugated to the momentum in respect to the bracket (7). We use the notation

QA — {qi7 Qaa’ )Laa’ na}
where we suppose the following relations are true:
[Q%, Pgp] = 855} (2%, mpp] = 856, [n®, Tp] = A (14)
The properties of the ghost fields will be connected to those of the momenta:
€(Gy) = €M) = €(my) = €4
€(Q%) =€(Py) =€(n®) = €(ry) =€, +1 (15)
80N =—g(Py) Q") =—I(P). (16)

We are able now to present the whole structure of generators for the extended phase space,
suitable for the sp(3) quantization of an irreducible gauge theory [1]:

ME{TOH TToas P{xm Pi, qi, Qaa’ )\aa’ Ua}- (17)

3. The sp(3) construction for first-rank systems

3.1. The BRST charges

The sp(3) quantization of anirreducible system requires the determination of the BRST charges
and of the extended Hamiltonian, which are solutions of equations (1) and (2), respectively,
with adequate boundary conditions. Later we shall solve these problems and, to be more
specific, we shall consider the particular case of a first-rank system, which is a system with
constant structure functiong;, andVg' in relations (3).

In this section we obtain the exact form of the BRST charges by applying the homological
perturbation theory. Let us consider the decomposition

0 ) ) 0)
Q=) Q rex2,) =j  gh(%) =1 (18)
j>0
The conditions, = §, + - - - induces the boundary expressions for the first items from (18):

) ab €] ac (2) o
S2ain = Ga8abQ Qain = EabCPO(b)\' S2ain = Taall - (19)

The Poisson superbracket (7) could also be decomposed in the form

3
[F.G] =) [F.Gl re[F, G]i) = resF +resG — k. (20)
k=0
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We project equation (1) on different values of the resolution degreek Fob we obtain

© © D (© o @
[Qu’ S.zb]O + [Qav Qb]l + [Qu’ S.zb]l

©
As Q, = Q,i,, the solution of this equation is

< D @D ac pm aa
Q= Qquin + Qasup: €abe Paph 3 me 0 (21)

Fork = 1, from (1) we obtain

@ @ @2 @ @ @
[Qas Qb]l + [Qa» S-Zb]z + [Qav Qb]Z =0

and this allows us to obtain

(2)
Q, = naan + 2f ﬂﬂym)»ﬁm Qabaab + fe,gfmnpﬂym Qan Qﬁp Q”bc‘i b (22)

The last term appearing in (18)§31. Its form might be given by projecting equation (1)
fork = 2.

In conclusion, the BRST charge®,, a = 1, 2,3, which ensure the sp(3) BRST
quantization of the first-rank theories have the form

0) D (2 3)
Qo=+ +Q+Q = Gobu 0% +eathahk°‘”

+; )/m Qﬂm Qaa + 7Taa77 +53 2 aﬂnym)\-ﬂm Qahgab
_2 oo fQﬁEmnpnym o™ Qﬂp Qabgab +1 > aﬁ Ty Qﬁbﬁ Sap
1 6 0 b
+]__2[f(7af9};3 + aﬁfel;]‘[)/ 0 8pq Qﬁn}h(m- (23)

It is very important to note that if we were to use the assignment from table (17) and rule
(9) in the previous expressions, we would find that the total BRST charge, defined as a sum of
the three charges (23), is in fact split into three successive lev@lsL® andL?,

;10 Al 12
Q=1 +Q,+ Q3. (24)

3.2. The extended Hamiltonian

We now obtain an extension of the canonical Hamiltonignof a first-rank bosonic theory,
as a solution of equations (2) with the boundary condition
H|G=P=7r=r=0 = HO- (25)

We again use the homological perturbations theory, and we write

(r) (r) (r)
H= Z H rexH) =r gh(H) = 0. (26)
r=0

It would be simple to verify that (2) projected for= —3, —2, —1 would lead to identities.
Forr = 0 we obtain

© © o O

[Hv S-261]0 + [H1 S20]1 = 0

©) . © , .

As H = Hy(q, p) and using (19) foK2, the previous equation becomes

(1) o pa
H = V§ P,y Q™. (27)
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The equation for = 1 has the form

(I 2 O 2 1
[H’ Qa]l + [H, Qa]l + [H7 Qa]Z =0.

This equation gives the term

@

H = Va1 (28)
The last non-vanishing term in the decomposition (26) will correspond to the watu2 and
will have

® o

H = Vgtn". (29)

In conclusion using the graduation from (17), for a first-rank irreducible gauge theory we
can extend the HamiltoniaHy(g, p) to the whole phase space in the form

(-1,0 1.0 -1-n@&Yy 5 @D
H=Ho+V§ Py QF+VG[ Po QF + 7, AF]
-1-2@2 (L, 522 (2323 (3 3B

+VE[ Py OF + 7 M+ V[ 7w AP+ n’ 1. (30)

In this expression we can see that the first two terms contain variables fraifPtHevel. The
third term is aL Y ® L™ term and the last two brackets are expressefl@a8 ® L@ and
LY ® L® terms, respectively.

3.3. The gauge fixing

We come now to the analysis of the gauge fixing procedure that should be used in the sp(3)
case.
In the standard BRST theory the gauge fixed Hamiltonian has the form
Hy = H+[Q,Y].

The only requirements oh consist of using manifestly covariant gauges ghdy) = —1.
There are many possibilities for enlarging the extended phase space without changing the
physical contents of the theory, but only the simpler ones have been used in the practical cases

[9].

For the sp(2) case the gauge fixing is accomplished so that
Hgf =H+ [Ql[Qz, Y]]

In the formalism we have adopted, the sp(3) BRST invariant Hamiltonian will have the
form

I‘Igf=H+STYEH+K- (31)

The unique standard requirementgig(H,;) = 0 and it simply impliesgh(K) = 0. No
restriction on the values of the level number must be imposed. Therefore, we could consider
that

K=> K. (32)

0,0
In the standard BRST theory variables of the formn € L© appear, so that the sum (32)

(0,0)
contains the termK only. For the sp(3) theory one can fikl= s7 Y of the form (32) with
the properties:
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() K iss,-invariant @ = 1, 2, 3);
(ii) foranya = 1, 2, 3, there is a functioy’ s.t. K = s7Y = s,Y’.
These statements are connected to the uniqueness of the sp(3) Hamiltonian and the form
of the arbitrary terms that the sp(3) invariance allows to appear in the extended Hamiltonian.

More precisely, it is simple to verify the following theorem, which generalizes a result issued
from the sp(2) case [7], would be true.

Theorem 1. Let K be a sp(3)-BRST invariant non-constant function. A funcloexists,
defined oM = {Q*, P4; A =1, ...} with gh(Y) = —3 so that

K = %b[sz [, [ YT]). 59

In conclusion, as we require the sp(3) invariancéfef and H from (31) to satisfy this
property by construction, we obtain th&itshould have the form (33).

4. Comparison with previous BRST symmetries

The standard BRST quantization for an irreducible theory could be performed in the extended
phase space:

MO = {POU Di, qis Qa}

ghP, = —ghQ®* =-1 resP, =1 resQ“ = 0. (34)
The BRST charge for a bosonic first-rank theory has the form, following [9],

Q=G,0"+5f}P,0° 0% (35)
The extended Hamiltonian can be written as

H = Ho+ Vg P,0". (36)

In the case of the sp(2) symmetry, the suitable phase space ought to be generated by the
variables

My = {7y, Puas pi q'» Q%, 2%} (37)
For the two BRST charges corresponding to a first-rank theory we obtain [10]
Qu = Go Q% 8ub + €ap Push® + 5 £ Pym Q7" Q*" 5,
3 Loy M Q% ba + 35 f i Fopemny Q" Q7 Q7" 8. (38)
The total ‘supersymmetric’ Hamiltonian has the form
H = Ho+ Vj Py QP + Vil (39)
We can now compare these results to those we obtained in the previous section.

e We can assign Eevel numbeto the variables from (34), so that

(-1,0 (1,0
P,= P, Qa = Q(X .
It is clear that the BRST charge (35) and the Hamiltonian (36) of the standard theory
are created using the© variables only. They might be considered as the degree zero
approximation of the similar quantities (23) and (30).
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e Inthe case of the variables (37) we can assigridiiel numbesso that
(-1,1-a) (La-1) (—2.-1) (2.1)
P,.,= P, Q% = Q% Ty = Ty A=)\ a=1,2.
In our notation, the variables, andr® have been identified as tiié=? andL® variables,
respectively. With these assignments, the charges (38) have the form
1,09 @y
Q= Q Q= Q.
The Hamiltonian (39) is the sum @, and two terms built with thé& @ andLY @ L®
variables, respectively. So, we could identify the sp(2) theory as a second-order theory
(a ‘two-level’ theory).

5. Conclusions

We had in mind two main aims for the present paper. First, we wished to offer an explicit
example of computation of an sp(3) BRST symmetry in order to compare this symmetry with
those previously developed, which were less extended symmetries. We chose the example of
first-rank theories because of their practical importance and because they allow us to obtain
the complete expressions for the BRST charges and for the Hamiltonian. Second, we tackled
the gauge fixing problem and we have presented here the structure of a sp(3) gauge fixed
Hamiltonian. The conclusions we infer are the following.

(i) Itis possible to extend the phase space more than the sp(2) theory shows. An extended
phase space allows the implementation of an extended BRST symmetry. The theory we
proposed offers a rule for writing all the extra terms that could be expected for a given
structure of the phase space.

(i) In the level picture that we propose, the BRST charges and the extended Hamiltonian
could be viewed as sums of more items, situated on successive levels. From this point of
view, the standard BRST theory is a one-level theory and the sp(2) is a two-level theory.
We can restrict ourselves to the number of levels we want for the case we are dealing with.

(i) the freedom of choosing a gauge fixing term is as large as the symmetry implemented. In
the level picture, this extended freedom is given by the possibility of using a ‘more levels’
function, of the form (32).
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